Cross Section Measurement Update

Emily Maher

04 January 2005

Outline

- Expression for Relative Cross Section
- Parameters for Relative Cross Section
 - Number of produced neutrinos which traverse the target
- Cross Check of Relative Cross Section
 - Best method of measuring the energy of the events

Relative Cross Section Expression

To derive a formula for the cross section of the charged current interaction of the ν_{τ} , begin with the general expression for the expected number of observed events:

$$\langle N_{\nu_{\alpha}} \rangle = \int n_{\nu_{\alpha}}(E) \cdot \epsilon_{\nu_{\alpha}} \cdot \sigma_{\nu_{\alpha}}(E) \cdot N_{\mathsf{SCat}} \cdot N_{\mathsf{POT}} \cdot dE$$
(1)

where

 $\begin{array}{ll} \langle N_{\nu_{\alpha}} \rangle & \text{observed number of cc } \nu_{\alpha} \\ n_{\nu_{\alpha}}(E) & \text{number of } \nu_{\alpha} \text{ per POT} \\ \epsilon_{\nu_{\alpha}} & \text{total efficiency} \\ \sigma_{\nu_{\alpha}}(E) & \text{cross section of the } \nu_{\alpha} \\ N_{\text{Scat}} & \text{number of scat. centers in the target} \\ N_{\text{POT}} & \text{number of POT} \end{array}$

To calculate the relative cross section, I must choose ν_{μ} or ν_{e} . I will choose ν_{e} because they are virtually all prompt events. Using the ν_{e} s, the expression for the relative cross section is:

$$\frac{\langle N_{\nu_{\tau}} \rangle}{\langle N_{\nu_{e}} \rangle} = \frac{\int n_{\nu_{\tau}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}(E) \cdot N_{\text{scat}} \cdot N_{\text{POT}} \cdot dE}{\int n_{\nu_{e}}(E) \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}(E) \cdot N_{\text{scat}} \cdot N_{\text{POT}} \cdot dE}$$
(2)

Both $N_{\rm scat}$ and $N_{\rm POT}$ are the same for both ν_{τ} and ν_{e} , so these cancel. This reduces the equation to:

$$\frac{\langle N_{\nu_{\tau}} \rangle}{\langle N_{\nu_{e}} \rangle} = \frac{\int n_{\nu_{\tau}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}(E) \cdot dE}{\int n_{\nu_{e}}(E) \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e}}(E) \cdot dE}$$
(3)

Parameters for the Relative Cross Section

 σ_{ν_e} for cc interactions at the typical energies in this experiment (> 5 GeV) is assumed to be linear in energy, so it can be rewritten as:

$$\sigma_{\nu_e}^{cc}(E) = E_{\nu_e} \cdot \sigma_{\nu_e}^{cc} \text{ const}$$
 (4)

where E_{ν_e} is the energy of the ν_e and $\sigma^{cc}_{\nu_e}$ const is the constant part of the cross section. The cross section for the ν_{τ} can be written in terms of the ν_e cross section:

$$\sigma_{\nu_{\tau}}^{cc}(E) = K_F(E) \cdot \sigma_{\nu_e}^{cc}(E) \tag{5}$$

where $K_F(E)$ is a kinematic term that is necessary because of the finite mass of the tau lepton. Equations 4 and 5 can be combined:

$$\sigma_{\nu_{\tau}}^{cc}(E) = K_F(E) \cdot E_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau} \text{ const}}^{cc} \tag{6}$$

If the ν_{τ} is a standard model particle, then:

$$\sigma_{\nu_e \text{ const}}^{cc} = \sigma_{\nu_\tau \text{ const}}^{cc} \tag{7}$$

Substituting equations 4 and 6 into 3:

$$\frac{\langle N_{\nu_{\tau}} \rangle}{\langle N_{\nu_{e}} \rangle} = \frac{\int n_{\nu_{\tau}}(E) \cdot \epsilon_{\nu_{\tau}} \cdot K_{F}(E) \cdot E_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau}}^{cc} \cdot const} \cdot dE}{\int n_{\nu_{e}}(E) \cdot \epsilon_{\nu_{e}} \cdot E_{\nu_{e}} \cdot \sigma_{\nu_{e}}^{cc} \cdot const} \cdot dE}$$
(8)

Simplifying this equation:

$$\frac{\langle N_{\nu_{\tau}} \rangle}{\langle N_{\nu_{e}} \rangle} = \frac{\epsilon_{\nu_{\tau}} \cdot \sigma_{\nu_{\tau} \text{const}} \cdot \int n_{\nu_{\tau}}(E) \cdot K_{F}(E) \cdot E_{\nu_{\tau}} \cdot dE}{\epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e} \text{const}} \cdot \int n_{\nu_{e}}(E) \cdot E_{\nu_{e}} \cdot dE}$$
(9)

Solving for $\sigma_{\nu_{\tau} \text{const}}$:

$$\sigma_{\nu_{\tau} \text{const}} = \frac{\langle N_{\nu_{\tau}} \rangle \cdot \epsilon_{\nu_{e}} \cdot \sigma_{\nu_{e} \text{const}} \cdot \int n_{\nu_{e}}(E) \cdot E_{\nu_{e}} \cdot dE}{\langle N_{\nu_{e}} \rangle \cdot \epsilon_{\nu_{\tau}} \cdot \int n_{\nu_{\tau}}(E) \cdot K_{F}(E) \cdot E_{\nu_{\tau}} \cdot dE}$$
(10)

Parameters Cont.

 $\langle N_{\nu_{\tau}} \rangle$ and $\langle N_{\nu_e} \rangle$ are the number of identified ν_{τ} and ν_e events, which comes from the data.

The efficiencies have been measured using Monte Carlo previously by many people

Assuming lepton universality, $\sigma_{\nu_e \text{const}} = \sigma_{\nu_\mu \text{const}}$. $\sigma_{\nu_\mu \text{const}}$ is listed in the particle data book. The average for ν and $\bar{\nu}$ is:

$$\sigma_{\nu_e \text{const}} = 0.505 \pm 0.016 \times 10^{-38} cm^2 GeV^{-1}$$
(11)

 K_f has been calculated as a function of energy.

Parameters Cont.

 $n_{
u_{\tau}}$, the number of neutrinos which hit the target is:

$$n_{\nu_{\tau}}(E) = N_{\nu_{\tau} \text{prod}}(E) \cdot \eta \cdot \frac{dN_{\nu}}{dE}$$
 (12)

where

 η is the target angular acceptance which will cancel

 $N_{\nu_{\tau} \mathrm{prod}}(E)$ is the number of neutrinos produced as a function of energy, which is calculated using charm production cross sections and charm branching ratios

 $\frac{dN_{\nu}}{dE}$ is the energy spectrum of the produced neutrinos. I calculated this using the Monte Carlo. The results follow:

For $\nu_{ au}$, $\frac{dN_{
u}}{dE}$ is:

For ν_e , $\frac{dN_{\nu}}{dE}$ is:

Currently I am using another fixed-target neutrino experiment, E613, to cross check these plots. E613 is an experiment which used 400 GeV protons to produce prompt ν_{μ} s and ν_{e} s.

Cross Check for Cross Section

As a cross check for the relative cross section measurement, I will compare the ν_e and ν_τ energy spectra. The procedure is:

- ullet Use the identified u_e events to produce a u_e energy spectrum.
- Assume lepton universality between the ν_e and the ν_{τ} , that is, assume their cross sections are equal
- Use the ν_e energy spectrum to predict the ν_{τ} energy spectrum. This is accomplished by correcting the ν_e energy spectrum for the the difference in charm cross branching ratios, efficiencies, and kinematics for the . ν_e and the ν_{τ} .

• Compare the ν_{τ} energy spectrum predicted by the ν_{e} energy spectrum and the actual ν_{τ} energy spectrum (only a handful of events).

To complete this, I must decide on a method of measuring the energy of the events. Possible methods are multiple scattering, EMCAL, and showers in scintillating fibers. I am still working on this.

Conclusion/Future Work

Cross section measurement is coming along

I will finish using E613 to cross check the produced neutrino energy spectra

I will finalize the method of measuring energy and compare the $\nu_{ au}$ energy spectrum and the ν_{e} energy spectrum